Programmer Electronic Control - Command Set -

Reverse-Engineering and restoration Project 2005-2009 by Dr. Erik Baigar, erik@baigar.de Revision 2009/04/10 All Rights Reserved

x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description
0	0	0	0	LDI-Group: Data from memory position $[x_6x_0]$ is transferred to index register IDX . Next Operation of STA, STS, INC, ADD and SUB occurs relative to this index register. Afterwards IDX is cleared by these instructions. The index register is always loaded from the zero-page if $x_7 = 0$ (LDI). The LDIP instruction with $x_7 = 1$ uses the page register P to calculate the adress via $128 \cdot P + IDX + (x_6x_0)$. The unit freezes during memory access and needs power cycle to recover if P is not initialized before using the LDIP instruction.
0	0	0	1	ADD-Group: Data from memory position $[IDX + x_6x_0]$ is ADDed to accumulator and result is stored within accumulator (ADD , $x_7 = 0$). IDX is cleared during adding and Programmer Electronic Control freezes if $x_7 = 1$ (ADDP) in an attempt to access a not initialized page register P . Address calculation as in LDI. There seems to be no carry flag mechanism during addition. $0x100, 256, Function 1, 2.394\mu s$
0	0	1	0	SUB-Group: Accumulator is subtracted from data in memory location $[IDX + x_6x_0]$. Result is kept in the accumulator register, IDX set to zero after the instruction. SUBP uses the above mentioned paging register P and the CPU freezes in SUBP ($x_7 = 1$) in encountering an uninitializted P register. No carry mechanism discovered so far. $0x200, 512, Function 2, 3.554 \mu s$
0	0	1	1	STS/STB-Group: Stores the B register to core memory $[IDX + x_6x_0]$. IDX is used for relative memory access and cleared after this access. Accumulator remains unchanged. The B register is implemented on the data boards SK8 and SK9 and is used in SHR, SHL, MUL and DIV commands - see below. Bit7 switches the paging mechanism: STB for $x_7 = 0$ without paging and STBP if $x_7 = 1$ with paging (address calculated as in ADD above). The unit freezes on STBP if P is not initialized! Waveform-Example sta0_clr129_sta2:

¹Early during investigation this was called "extended shifter register", thus the assembler understands the old STS

x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description
0	1	0	0	LDA-Group: With $x_7 = 0$ (LDA) the accumulator register is loaded from memory location $[IDX + x_6x_0]$ and the B register is unmodified by this instruction. IDX is cleared by the LDA operation and PEC switches paging on if $x_7 = 1$ (LDAP). Adress is calculated as followd for paging on: $128 \cdot P + IDX + (x_6x_0)$. PEC freezes if $x_7 = 1$ (LDAP) in an attempt to access a not initialized page register P .
0	1	0	1	STA-Group: The accumulator register is stored in memory location $[IDX + x_6x_0]$ and the accumulator is not affected by the instruction. IDX is cleared by the STA/STAP operation and PEC freezes if a STAP $(x_7 = 1)$ is used and P has not been initialized before. Signals during STA: STAP S
				AND-Group: The accumulator register logically ANDes with memory location $[IDX + x_6x_0]$. IDX is cleared by the AND/ANDP operation and PEC calculates the address from $128 \cdot P + IDX + (x_6x_0)$ if paging is activated in ANDP
0	1	1	0	Takes the address from 126 · $T + TDX + (x_6x_0)$ if paging is activated in ANDI ($x_7 = 1$). Ox600, 1536, Function 6, 2.397 μ s
				RJAZ-Group: Continues with next instruction immediately if accumulator is not
0	1	1	1	zero. Otherwise the RJAZ instruction (R elative- J ump-if- A ccu- Z ero) performs a relative jump like RJMP. 0x700, 2047, Function 7, 1.776 – 2.921 μ s

x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description
1	0	0	x_8	RJMP-Group: x_7 determines wether the jump is x_6x_0 instructions forward (x_7 =0) or backward (x_7 =1). Especially 100000000000 and 100010000000 are the same representation of a loop lasting forever.
				Special care has to be taken if IDX is not zero. In this case the jump width is calculated in the following way: $(-1)*x_7*[IDX+x_6x_0]$ and IDX is cleared by the jump. $0x800, 2048, Function 8, 1.768\mu s$
1	0	0	1	RJAN-Group: Continues with next instruction immediately if accumulator is positive, i.e. $a_{11} = 0$. Otherwise the RJAN instruction (R elative- J ump-if- A ccu- N egative) performs a relative jump like RJMP. $0x900, 2304, Function 9, 1.773\mu s$
1	0	1	0	INC-Group: The accumulator register is loaded from memory location $[IDX + x_6x_0]$ (INC , paging off for $x_7 = 0$) or from $[128 \cdot P + IDX + (x_6x_0)]$ (INCP , paging active for $x_7 = 1$). Then the accumulator incremented and the result is stored back to the same address. IDX is cleared after the INC's write operation and PEC freezes in INCP if the page register P has not been initialized after booting the PEC. Especially remember, that INC modifies the accumulator!
1	0	1	1	IDXCALL-Group: First, the memory location of the next instruction to execute (i.e. $PC+1$) is saved to the memory adress specified in the lower 7 bits of the command: $PC+1 \rightarrow [00x_7x_0]$ (In case of the IDXCALLP the the paging is used only in this step, i.e. $PC+1 \rightarrow [128 \cdot P+00x_7x_0]$. If P is not initialized here, PEC will freeze!). Afterwards the new program counter PC is loaded from the memory location where is loaded from the memory location where IDX points to, i.e. the execution is continued with an indirect jump ([IDX] → PC , here no paging is used.). Adresses are stored/read in two successive words with MSW (000 a_{12} 000000000) first and than LSW ($a_{11}a_0$). In case of the paging variant IDXCALLP, the MSW of the return address contains the current value of the paging register (000 $a_{12}p_7p_0$). The accumulator register is not affected by this operation and IDX is cleared. This operation can jump the the upper half of the memory without freezing the unit and B and B are not influenced ² . NPC Oxb00, 2816, Function 11, 6.607 μs Oxb00, 2816, Function

 $[\]frac{1}{2}$ This indeed remarkable, since the P is written together with the current address but it is NOT read in reading the destination address!

x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description
1	1	0	0	UMUL-Group: This command multiplies the accumulator with the value read from $[IDX + x_6x_0]$. Using the paging variant UMULP (for $x_7 = 1$), the address is calculated including the P and the IDX registers as usual. The unit freezes in executing an UMULP if P has not been initialized. This multiplication is executed in microcode and incorporates 12 shift and add operations. Therefore the multiply lasts for more than $8.8\mu s$. IDX operates as usual. The result is stored in the B^3 register (LSW, i.e. $0 \ r_{10}r_{0}$) and the accumulator (MSW, $0 \ r_{21}r_{11}$). Caution: Only positive numbers (i.e. with bit 11 zero) are multiplied correctly. Thus UMUL and UMULP essentially are 11bit * 11bit multiplications. IDX is cleared by the operation and the special shift register is cleared before the multiply process. $0xc00, 3072, Function 12, 9.360\mu s$
1	1	0	1	UDIV-Group: Iteratively executes a division. Herein the 22bit value formed by Accu and B is divided by the memory operand and the result is stored in the accumulator register: $a_{11}a_0 = \frac{a_{11}a_0b_{11}b_0}{m_{11}m_0}$ B is invalid after the operation (especially it does NOT give the reminder of the operation). The address of the memory operand is calculated according to the paging mechanism: For UDIV (specified by $x_7 = 0$) paging is disabled and the address is given by $IDX + x_6x_0$. For the paging UDIVP (for $x_7 = 1$) the address is given by $128 \cdot P + IDX + x_6x_0$. The paging variant freezes if P has not been initialized since powering up the unit.

 $^{^{3}}B$ is the same as the special shift register in previous versions of this document since this register was discovered during investigating shift operations.

x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description													
				Spec	ial-G	roup	Depending on x_7x_0 special functionality is available:										
				x_7	x_6	x_5	x_4x_0 and Description										
				0	0	0	SHL: Shifts accu left by x_4x_0 bits. Instruction takes $(4 + x_4x_0)$ -MEMEN/AADEN2-Cycles to complete. In each shift cycle first accumulator is shifted left where the MSB is dropped. Afterwards on the right side of accumulator b_{10} of the B register (extended shift register) is inserted for a_0 . Afterwards B is shifted left as well where the LSB is cleared: $b_0 = 0$. The extended shift register B can be accessed via the STB instruction. $0xe00, 3584, Function 14-0-0, 2.928\mu s + 0.576\mu s * N$										
			0	0	0	0	0	0	0	0	0	1	x_4 x_3 x_2 x_1 0 - MSRTA/MBTA: Regardless of x_4 x_3 x_2 x_1 Moves the B register to the Accumulator ⁴ . All 16 possible opcodes encode the MBTA instruction. Additionally, if IDX has been set prior to MBTA then the following actions occur: (1) B:= $(IDX >> 1)$ (2) Akku:= $(IDX >> 1)$				
1	1	1								0	0	0	0	0	1	x_4 x_3 x_2 x_1 1 - RSIDXTA : R ight S hift IDX to Accumulator (16 possible bit patterns): With IDX set prior to RSIDXTA the following operations are executed: (1) B:= $(IDX >> 1)$ and (2) if IDX odd then Akku:= $(IDX >> 1)$ otherwise Akku unchanged. Oxe21, 3617, Function 14-0-33, 2.368 μ s	
				0	1	0	x_4 x_3 x_2 x_1 0 - MPTA - Move P to Accu : Regardless of x_4x_1 the lower byte of the Accu is read back from the page register P . $0xe40, 3648, Function 14-0-64, 2.349\mu s$										
														0	1	0	x_4 x_3 x_2 x_1 1 - MTA: This instruction makes a second core read cycle at the next program counter address and reads this to the accumulator register. Regardless of x_4 x_3 x_2 x_1 this is done, i.e. 16 possible bit patterns exist for this instruction and this is <i>the only two-cycle-instruction</i> of the unit! (Move to Accumulator.) Oxe41, 3649, Function 14-0-65, 2.964 μs
												0	1	1	SHR: Shifts accu right by $-x_4x_0$ bits (i.e. $x_4x_0 = 11111$ shifts right one bit). Instruction takes $(4+!(x_4x_0)+1)$ -MEMEN/AADEN2-Cycles to complete. First the extended shift register (B) which can be accessed by the STB instruction is shifted right one position where it's b_0 bit is lost. Afterwards the accu is shifted right and therein a_{11} is replicated to a_{10} . The bit a_0 which is shifted out of accumulator is inserted as b_{10} into B . Thus there exist 11 hidden bits in the shifter unit's extended shift register B : $b_{10}b_0$. $0xe60, 3680, Function 14-0-96, 2.928\mu s + 0.576\mu s * N$		

⁴Earlier this instruction was called MSRTA as a acronym for **M**ove the extended **S**hift **R**egister **t**o the **A**ccumulator. But since the extended shift register is now B, the instruction has been changed. Old instruction still supported for compatibility.

x_{11}	x_{10}	x_9	x_8				x_7x_0 and Description				
				Spe	Special-Group: Depending on x_7x_0 special functionality is available:						
				1	0	0	Does an IOR instruction to address $10x_4x_0$ (EMUX=EMUXA=EMUXB=1) where the accumulator is modified.				
							0xe80, 3712, Function 14-1-0, $4.078\mu s$				
				1	0	1	MATSR/MATB: Completely independent of x_4x_0 this instruction Moves the Accumulator to B , the extended shift register ⁵ . All 32 possible combinations encode the MATB instruction! $0xea0, 3744, Function 14-1-32, 2.344 \mu s$				
1	1	1	0	1	1	0	MATP with x_4x_10 is a single word instruction copying the current value of the accumulator to the page register P . After this operation, the paging instructions can be used without freezing the PEC. Adress is calculated in all these instruction according to the following formula, whereas IDX is cleared in each instruction and P is persistent: $128 \cdot P + IDX + (x_6x_0)$. $0 \times (0.3776, \text{Function } 14\text{-}1\text{-}64, 2.930}\mu s)$				
	1	•		0	-	·		1	1	0	MTP with x_4x_10 is a dual word instruction loading the word following the command to the page register P . After this operation, the paging instructions can be used without freezing the PEC. Adress is calculated in all these instruction according to the following formula, whereas IDX is cleared in each instruction and P is persistent: $128 \cdot P + IDX + (x_6x_0)$. No other registers are affected. Oxec1, 3777, Function 14-1-65, 3.539 μ s
				1	1	1	IRQack: Acknowledge interrupt and write interrupt mask register: x_4x_0 has the following meaning:BitAction x_4 1: Enable IRQ for DPL2. x_3 1: Enable IRQ for DPL3. x_2 1: Enable IRQ for DPL1. x_1 1: Enable IRQ for DPL4. x_0 1: Global IRQ enable and ack current IRQ.Does not alter the accumulator or the extended shift register.				

⁵Historcally this was the MATSR instruction: **M**oves the **A**ccumulator **t**o extended **S**hift **R**egister. It is supported for compatibility, but in the future it should be replaced by MATB since the registers are called A, B, IDX and P from now on.

x_{11}	x_{10}	x_9	x_8					x_7x_0 and Description
								ata is read from the IO modules. x_4x_0 is some kind of address
				whi	ch is	s app	olied	to the bus in an intermediate state:
								The read commands first send a header out via the corresponding
								fast link:
								Output due to reading:
								1 Param Param Id Id 0 LSB MSB 0 1
								u s
								After terminating this by a clock high phase PEC waits up to $30 \mu s$
								for a packet being received (12 bits, LSB first, also terminated
								by clk high for 2 cycles). Afterwards PEC reads the contents of the fast serial link's input and continues operation. x_3x_0 are
								transmitted within the header as address as well as the plug-index
								(see WDPL commands).// Some instructions code the internal
								timer and DPL05 registers and PEC will only wait for an incoming
								packet, if the inbound clk is at low level during the RDPL
								command: DPL x y Command
							0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
				0	X	У	0	$\begin{vmatrix} 01 & 0 & 0 & RDFL2 & x_3 & & x_0 & (\neq 0.000 &$
1	1	1	1					03 1 1 RDPL3 x_3x_0
								04 1 0 RDPL4 x_3x_0 ($\neq 0001, \neq 0000, DPL05$)
								Waveform seen on the outbound channel in RDPL1 2:
								1,3446,3446,3446,3446,344 - 1,444
								-3.0000 us 2.0000 us 7.0000 us 1.00 us/div realtime
								y2(1) 4.21875 V x2(1) 3.08000 us y1(1) -156.250 mV x1(1) -620.000 ns delta y 4.37500 V delta x 3.70000 us 1/delta x 270.270 kHz
								1/delta x 270.270 kHz
								Function 15-0-(2-15,32-46,64-79,98-111), $4.866\mu s - 30.000\mu s$
								Yet unknown command - internally performs an IOR cycle to the
								address given by the parameter.
				0	X	У	1	DANGER
								Function 15-0-(16-31,48-63,80-95,112-127), 4.866μs

x_{11}	x_{10}	x_9	x_8		x_7x_0 and Description					
					IO-Group2: Accesses the internal timer module and the seperate 24 bit transceiver					
				module for DPL05. Listed seperately despite the commands beeing integral pa						
					the IOR and IOW module. This is for clarity. DPL05 operates at a data rate of 2					
				per	bit (3.90	6kBaud) and the timer has tic period of one per μs .			
							RPPT: $(x_4x_0 = 00000)$ Gets the next value from paper tape			
							into accumulator; Caution: PEC is waiting until the word has been			
				0	0	0	loaded, even if no paper tape is connected. Reset works in this situation.			
							0xf00, 7400, Function 15-0-0, variable			
							RTTY: $(x_4x_0 = 00001)$ Reads a word into accumulator; Caution PEC is positive worth the great has been transformed. Without			
				0	0	0	tion: PEC is waiting until the word has been transferred. Without TTY PEC is waiting indefnitely, but Reset recovers PEC.			
							0xf01, 7401, Function 15-0-1, variable			
							MTTA: $(x_6x_0 = 0111111)$ Loads the accumulator with the current value of the timer.			
				0	0	1				
							0xf3f, 7477, Function 15-0-63, 4.256 \(\mu \)			
							RDPL5H, RDPL5L: Reads the current values of the shift registers into the accumulator. Transmission has to be controlled by			
				0	1	0	interrupt routine: Only there these registers should be accessed.			
							$0xf4(0,1)$, $750(0,1)$, Function 15-0-(64,65), $2.976\mu s$			
							WPPT: $(x_4x_0 = 00000)$ Write accumulator to paper tape and			
					0		wait for acknowledge from paper tape. Prolonged waiting may			
				1		0	occur, especially without paper tape connected.			
				1 0			Oxf80, 7600, Function 15-1-0, variable			
1	1	1	1			0	WTTY: $(x_4x_0 = 00001)$ Write current contents of the accu-			
							mulator to TTY. PEC is waiting until the word has been trans-			
					0		ferred and without TTY connected to PEC waiting is indefinitely.			
					"		Reset ca terminate this state.			
							0xf81, 7601, Function 15-1-1, variable			
							MATTC : $(x_6x_0 = 0111111)$ Stores the accumulator into the			
							the timer's 12 bit comparator register for the internal timer of the			
							PEC. A counter is counting upwards until it reaches the value			
							specified in the comparator register. This counter is incremented			
							every $8\mu s$, leading to approx. 32ms maximum interval between			
				1	0	1	interrupts.			
							On occurence of an interrupt, the program execution is interrup-			
							ted, the current address is saved to memory 0x00 (high bit, page			
							register) and 0x001 (low word) and execution continues at the ad-			
							dress specified by 0x84, 0x85.			
							0xfbf, 7677, Function 15-1-63, $3.824 \mu s$			
							WDPL5H, WDPL5L: Write the accumulator the the DPL05's			
							transmitter registers. High $(x_6x_0 = 000001)$ and low			
							$(x_6x_0 = 000000)$ word have to be written separately and the			
				1	1	0	MSB of MSW is automatically set to 1 during write. Unclear how			
				1	1		transmission is started (needs more than one write) and the LSB			
							of LSW is sent first. This bit is present during the clock pause			
							before each transmission.			
							$0xfc(0,1), 770(0,1),$ Function 15-1-(64,65), $4.456\mu s$			

Waveforms during transmission on DPL05: Top channel is the clock signal which is running all the time (except reset and DMA state). Lower trace shows the data signal. Only during the first 24 clock cycles data is transmitted:

During the pause on the clock signal when it is high, the lowest bit of the transmitter is directly visible on the output. Thus writing the transmit register continuously leads to the bursts visible on the data line in the clock pause.

Still unknown how to determine, when the transmission has completed.

x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description
1	1	1	1	RETFI: Return from Interrupt if $x_7 = = x_0 = 1$.
1	1	1	1	$0xfff, 4095, Function 15-1-127, 7.120 \mu s$

from SK7

