Programmer Electronic Control - Command Set -

Reverse-Engineering and restoration Project 2005-2007 by Erik Baigar, Revision 2007/11/01 All Rights Reserved

x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description
0	0	0	0	LDI-Group: Data from memory position $[x_6x_0]$ is transferred to index register IDX . Next Operation of STA, STS, INC, ADD and SUB occurs relative to this index register. Afterwards IDX is cleared by these instructions. The index register is always loaded from the zero-page if $x_7 = 0$ (LDI). The LDIP instruction with $x_7 = 1$ uses the page register P to calculate the adress via $128 \cdot P + IDX + (x_6x_0)$. The unit freezes during memory access and needs power cycle to recover if P is not initialized before using the LDIP instruction.
0	0	0	1	ADD-Group: Data from memory position $[IDX + x_6x_0]$ is ADDed to accumulator and result is stored within accumulator (ADD , $x_7 = 0$). IDX is cleared during adding and Programmer Electronic Control freezes if $x_7 = 1$ (ADDP) in an attempt to access a not initialized page register P . Address calculation as in LDI. There seems to be no carry flag mechanism during addition. $0x100, 256, Function 1, 2.394 \mu s$
0	0	1	0	SUB-Group: Accumulator is subtracted from data in memory location $[IDX + x_6x_0]$. Result is kept in the accumulator register, IDX set to zero after the instruction. SUBP uses the above mentioned paging register P and the CPU freezes in SUBP ($x_7 = 1$) in encountering an uninitializted P register. No carry mechanism discovered so far. $0x200, 512, Function 2, 3.554 \mu s$
0	0	1	1	STS/STB-Group: Stores the B register 1 to core memory $[IDX + x_6x_0]$. IDX is used for relative memory access and cleared after this access. Accumulator remains unchanged. The B register is implemented on the data boards SK8 and SK9 and is used in SHR, SHL, MUL and DIV commands - see below. Bit7 switches the paging mechanism: STB for $x_7 = 0$ without paging and STBP if $x_7 = 1$ with paging (address calculated as in ADD above). The unit freezes on STBP if P is not initialized! Waveform-Example sta0_clr129_sta2:
				$0x300, 768, Function 3, 2.992 \mu s$

¹Early during investigation this was called "extended shifter register", thus the assembler understands the old STS

x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description
0	1	0	0	LDA-Group: With $x_7 = 0$ (LDA) the accumulator register is loaded from memory location $[IDX + x_6x_0]$ and the B register is unmodified by this instruction. IDX is cleared by the LDA operation and PEC switches paging on if $x_7 = 1$ (LDAP). Adress is calculated as followd for paging on: $128 \cdot P + IDX + (x_6x_0)$. PEC freezes if $x_7 = 1$ (LDAP) in an attempt to access a not initialized page register P .
0	1	0	1	STA-Group: The accumulator register is stored in memory location $[IDX + x_6x_0]$ and the accumulator is not affected by the instruction. IDX is cleared by the STA/STAP operation and PEC freezes if a STAP $(x_7 = 1)$ is used and P has not been initialized before. Signals during STA:
				AND-Group: The accumulator register logically ANDes with memory location
0	1	1	0	$[IDX+x_6x_0]$. IDX is cleared by the AND/ANDP operation and PEC calculates the address from $128 \cdot P + IDX + (x_6x_0)$ if paging is activated in ANDP $(x_7=1)$.
0	1	1	1	RJAZ-Group: Continues with next instruction immediately if accumulator is not zero. Otherwise the RJAZ instruction (R elative- J ump-if- A ccu- Z ero) performs a relative jump like RJMP. 0x700, 2047, Function 7, 1.776 – 2.921μs

x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description
1	0	0	0	RJMP-Group: x_7 determines wether the jump is x_6x_0 instructions forward (x_7 =0) or backward (x_7 =1). Especially 100000000000 and 10001000000 are the same representation of a loop lasting forever.
				Special care has to be taken if IDX is not zero. In this case the jump width is calculated in the following way: $(-1)*x_7*[IDX+x_6x_0]$ and IDX is cleared by the jump. $0x800, 2048, \text{ Function } 8, 1.768\mu s$
1	0	0	1	RJAN-Group: Continues with next instruction immediately if accumulator is positive, i.e. $a_{11} = 0$. Otherwise the RJAN instruction (R elative- J ump-if- A ccu- N egative) performs a relative jump like RJMP. $0x900, 2304, Function 9, 1.773\mu s$
1	0	1	0	INC-Group: The accumulator register is loaded from memory location $[IDX + x_6x_0]$ (INC , paging off for $x_7 = 0$) or from $[128 \cdot P + IDX + (x_6x_0)]$ (INCP , paging active for $x_7 = 1$). Then the accumulator incremented and the result is stored back to the same address. IDX is cleared after the INC's write operation and PEC freezes in INCP if the page register P has not been initialized after booting the PEC. Especially remember, that INC modifies the accumulator!
1	0	1	1	IDXCALL-Group: First, the memory location of the next instruction to execute (i.e. $PC+1$) is saved to the memory adress specified in the lower 7 bits of the command: $PC+1 \rightarrow [00x_7x_0]$ (In case of the IDXCALLP the the paging is used only in this step, i.e. $PC+1 \rightarrow [128 \cdot P+00x_7x_0]$. If P is not initialized here, PEC will freeze!). Afterwards the new program counter PC is loaded from the memory location where is loaded from the memory location where IDX points to, i.e. the execution is continued with an indirect jump ([IDX] → PC , here no paging is used.). Adresses are stored/read in two successive words with MSW (000 a_{12} 000000000) first and than LSW ($a_{11}a_0$). In case of the paging variant IDXCALLP, the MSW of the return address contains the current value of the paging register (000 a_{12} p $_{7}p_{0}$). The accumulator register is not affected by this operation and IDX is cleared. This operation can jump the the upper half of the memory without freezing the unit and B and B are not influenced ² .

 $[\]frac{1}{2}$ This indeed remarkable, since the P is written together with the current address but it is NOT read in reading the destination address!

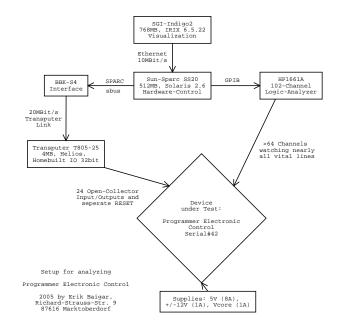
x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description
1	1	0	0	UMUL-Group: This command multiplies the accumulator with the value read from $[IDX + x_6x_0]$. Using the paging variant UMULP (for $x_7 = 1$), the address is calculated including the P and the IDX registers as usual. The unit freezes in executing an UMULP if P has not been initialized. This multiplication is executed in microcode and incorporates 12 shift and add operations. Therefore the multiply lasts for more than $8.8\mu s$. IDX operates as usual. The result is stored in the B^3 register (LSW, i.e. $0 \ r_{10}r_{0}$) and the accumulator (MSW, $0 \ r_{21}r_{11}$). Caution: Only positive numbers (i.e. with bit 11 zero) are multiplied correctly. Thus UMUL and UMULP essentially are 11bit * 11bit multiplications. IDX is cleared by the operation and the special shift register is cleared before the multiply process. $0xc00, 3072, Function 12, 9.360\mu s$
1	1	0	1	UDIV-Group: Iteratively executes a division. Herein the 22bit value formed by Accu and B is divided by the memory operand and the result is stored in the accumulator register: $a_{11}a_0 = \frac{a_{11}a_0b_{11}b_0}{m_{11}m_0}$ B is invalid after the operation (especially it does NOT give the reminder of the operation). The address of the memory operand is calculated according to the paging mechanism: For UDIV (specified by $x_7 = 0$) paging is disabled and the address is given by $IDX + x_6x_0$. For the paging UDIVP (for $x_7 = 1$) the address is given by $128 \cdot P + IDX + x_6x_0$. The paging variant freezes if P has not been initialized since powering up the unit.

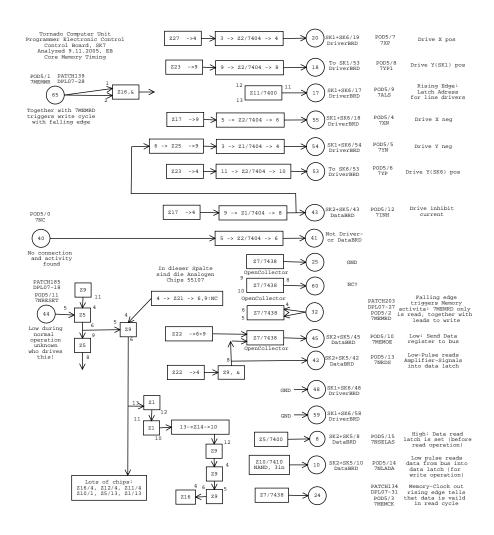
 $^{^{3}}B$ is the same as the special shift register in previous versions of this document since this register was discovered during investigating shift operations.

x_{11}	x_{10}	x_9	x_8		x_7x_0 and Description									
				Spec	ial-G	roup	Depending on x_7x_0 special functionality is available:							
				x_7	x_6	x_5	x_4x_0 and Description							
				0	0	0	SHL: Shifts accu left by x_4x_0 bits. Instruction takes $(4 + x_4x_0)$ -MEMEN/AADEN2-Cycles to complete. In each shift cycle first accumulator is shifted left where the MSB is dropped. Afterwards on the right side of accumulator b_{10} of the B register (extended shift register) is inserted for a_0 . Afterwards B is shifted							
							left as well where the LSB is cleared: $b_0 = 0$. The extended shift register B can be accessed via the STB instruction.							
							0xe00, 3584, Function 14-0-0, $2.928\mu s + 0.576\mu s * N$							
				0	0	1	x_4 x_3 x_2 x_1 0 - MSRTA/MBTA: Regardless of x_4 x_3 x_2 x_1 Moves the B register to the Accumulator ⁴ . All 16 possible opcodes encode the MBTA instruction. Additionally, if IDX has been set prior to MBTA then the following actions occur: (1) B:= $(IDX >> 1)$ (2) Akku:= $(IDX >> 1)$							
1	1	1	0	0	0	1	x_4 x_3 x_2 x_1 1 - RSIDXTA : R ight S hift IDX to A ccumulator (16 possible bit patterns): With IDX set prior to RSIDXTA the following operations are executed: (1) B:= $(IDX >> 1)$ and (2) if IDX odd then Akku:= $(IDX >> 1)$ otherwise Akku unchanged. Oxe21, 3617, Function 14-0-33, 2.368 μ s							
							x_4 x_3 x_2 x_1 0 - MPTA - Move P to Accu: Regardless of x_4x_1							
				0	1	0	the lower byte of the Accu is read back from the page register P . $0xe40, 3648, Function 14-0-64, 2.349\mu s$							
									0	1	cycle at the next program counter address and read accumulator register. Regardless of x_4 x_3 x_2 x_1 thin 16 possible bit patterns exist for this instruction at only two-cycle-instruction of the unit! (Move to Accompact of the November 1) (Move to A	x_4 x_3 x_2 x_1 1 - MTA: This instruction makes a second core read cycle at the next program counter address and reads this to the accumulator register. Regardless of x_4 x_3 x_2 x_1 this is done, i.e. 16 possible bit patterns exist for this instruction and this is <i>the only two-cycle-instruction</i> of the unit! (Move to Accumulator.) $0xe41, 3649, Function 14-0-65, 2.964 \mu s$		
						0	1	1	SHR: Shifts accu right by $-x_4x_0$ bits (i.e. $x_4x_0 = 11111$ shifts right one bit). Instruction takes $(4+!(x_4x_0)+1)$ -MEMEN/AADEN2-Cycles to complete. First the extended shift register (B) which can be accessed by the STB instruction is shifted right one position where it's b_0 bit is lost. Afterwards the accu is shifted right and therein a_{11} is replicated to a_{10} . The bit a_0 which is shifted out of accumulator is inserted as b_{10} into B . Thus there exist 11 hidden bits in the shifter unit's extended shift register B : $b_{10}b_0$. $0xe60, 3680, Function 14-0-96, 2.928\mu s + 0.576\mu s * N$					

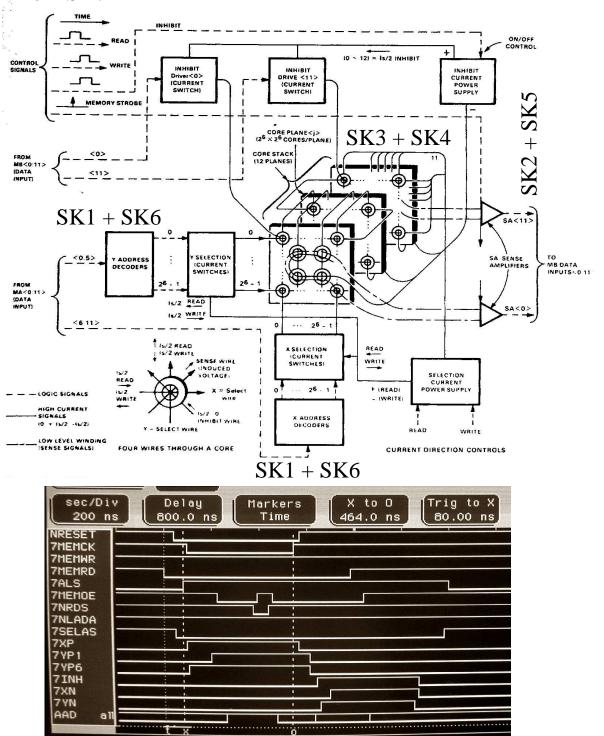
⁴Earlier this instruction was called MSRTA as a acronym for **M**ove the extended **S**hift **R**egister **t**o the **A**ccumulator. But since the extended shift register is now B, the instruction has been changed. Old instruction still supported for compatibility.

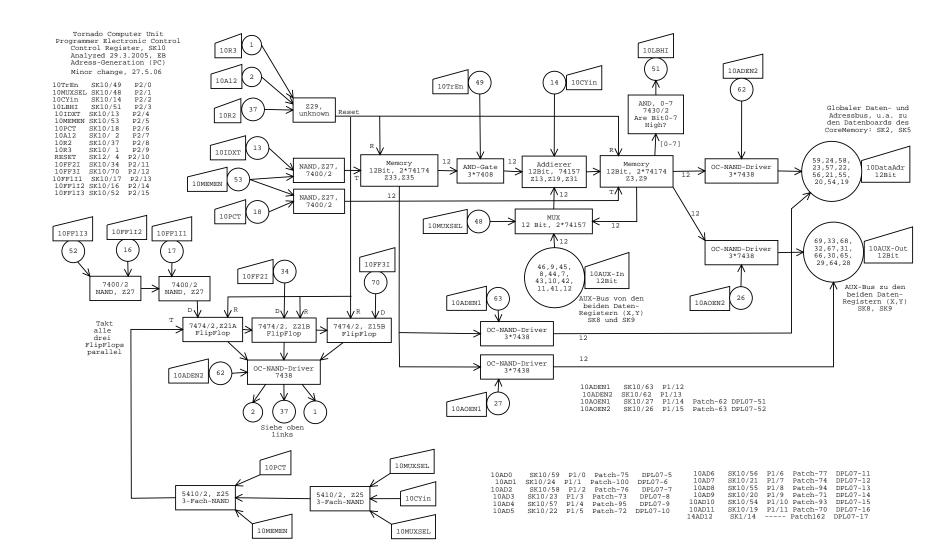
					m_ m_ and Description								
x_{11}	x_{10}	x_9	x_8	C	x_7x_0 and Description								
				Spe	cial	-Gro	Dup: Depending on x_7x_0 special functionality is available: Does an IOR instruction to address $10x_4x_0$						
							(EMUX=EMUXA=EMUXB=1) where the accumulator is						
				1	0	0	modified.						
							0xe80, 3712, Function 14-1-0, $4.078\mu s$						
							MATSR/MATB: Completely independent of x_4x_0 this instruc-						
				1	0	1	tion Moves the Accumulator to B , the extended shift register ⁵ .						
				-		•	All 32 possible combinations encode the MATB instruction!						
							0xea0, 3744, Function 14-1-32, 2.344μs						
							MATP with x_4x_10 is a single word instruction copying the cur-						
							rent value of the accumulator to the page register P. After this						
						0	operation, the paging instructions can be used without freezing						
				1	1		the PEC. Adress is calculated in all these instruction according to the following formula, whereas IDX is cleared in each instructi-						
1	1	1	0				on and P is persistent: $128 \cdot P + IDX + (x_6x_0)$.						
1	1	1	U				0xec0, 3776, Function 14-1-64, 2.930 μs						
							MTP with x_4x_10 is a dual word instruction loading the word						
							following the command to the page register <i>P</i> . After this operati-						
				1			on, the paging instructions can be used without freezing the PEC.						
							Adress is calculated in all these instruction according to the fol-						
				1	1	0	lowing formula, whereas IDX is cleared in each instruction and						
							P is persistent: $128 \cdot P + IDX + (x_6x_0)$. No other registers						
							are affected.						
							0xec1, 3777, Function 14-1-65, $3.539 \mu s$						
							0 0 0 0 Does a IOW instruction to address $111x_4x_0$						
							and writes accu with EMUX=EMUXA=EMUXB=1 to this ad-						
							dress. Does not alter the accumulator or the extended shift						
				1	1	1 1	register.						
							0xee0, 3808, Function 14-1-96, $5.117\mu s$						

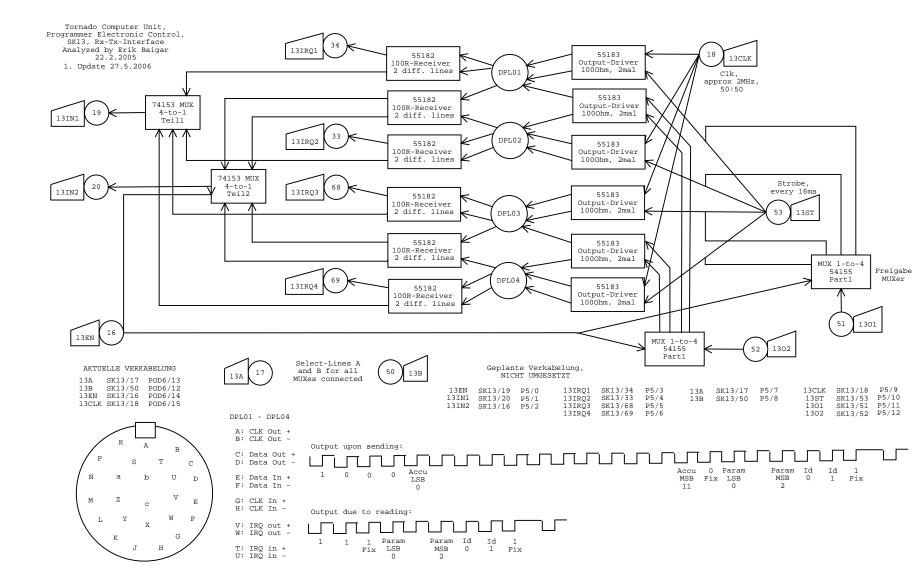

⁵Historcally this was the MATSR instruction: **M**oves the **A**ccumulator **t**o extended **S**hift **R**egister. It is supported for compatibility, but in the future it should be replaced by MATB since the registers are called A, B, IDX and P from now on.

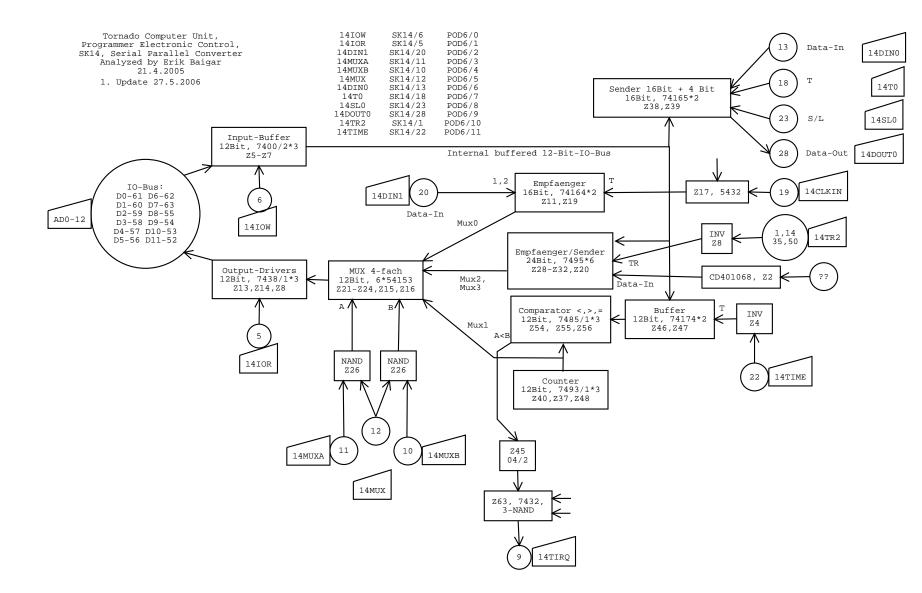

x_{11}	x_{10}	x_9	x_8		x_7x_0 and Description								
						-				In the IO modules. x_4x_0 is some kind of address in intermediate state:			
1	1	1	1	0	x	y	Reads the register in Some instread with (RDPL02 Plug DPL01 DPL02 DPL03 DPL04	e conto tructout, RD $x = 0$ 0 1 1	nten the tions data PL0 y 0 1 1 0	ts of the Panavia-Link DPL01 to DPL04 receiver accumulator. x_3x_0 are not used in most cases. So code the internal timer and DPL05 registers. A received will cause PEC to wait (RDPL01) or not 3,RDPL04): Command RDPL1 RDPL2, x_3x_0 (\neq 1111,timer) RDPL3 RDPL4, x_3x_0 (\neq 0001, \neq 0000,DPL05) D00, 7(40,44,50,54)0, Function 15-0-(0,32,64,96), 4.866 μ s – 13.000 μ s			

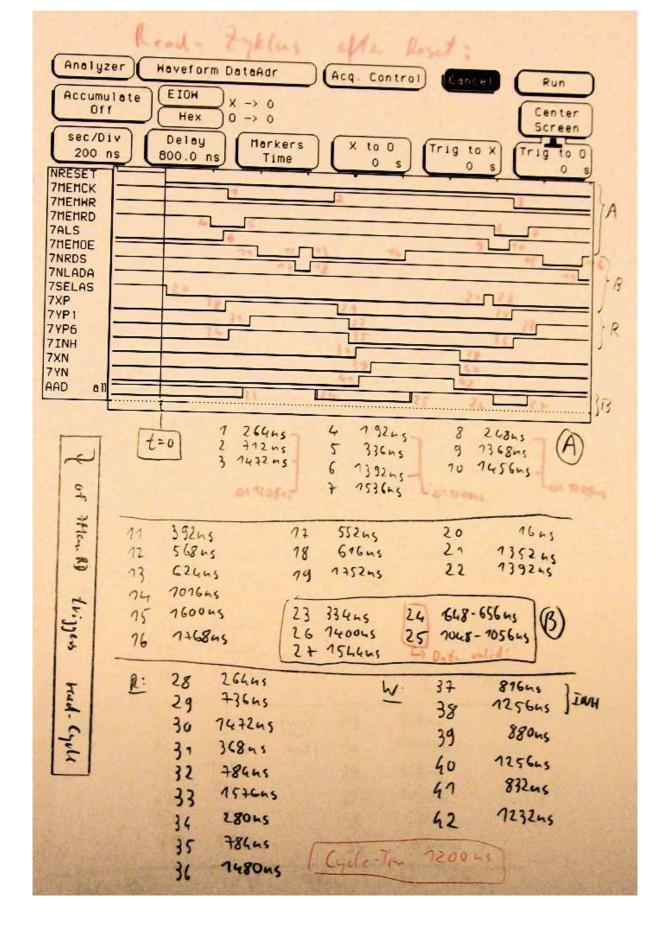
x_{11}	x_{10}	x_9	x_8		x_7x_0 and Description							
				IO-	Gro	up2	: Accesses the internal timer module and the seperate 24 bit transceiver					
							DPL05. Listed seperately despite the commands beeing integral part of					
				the 1	IOR	and	IOW module. This is for clarity. DPL05 operates at a data rate of $256 \mu s$					
				per	bit (3.90	6kBaud) and the timer has tic period of one per μs .					
							MTTA: $(x_6x_0 = 0111111)$ Loads the accumulator with the					
				0	0	1	current value of the timer.					
							0 xf3f, 7477, Function 15-0-63, $4.256\mu s$					
							RDPL5H, RDPL5L: Reads the current values of the shift regi-					
				0	1	_	sters into the accumulator. Unclear how to determine when trans-					
				U	1	0	mission is completed.					
							$0xf4(0,1), 750(0,1),$ Function 15-0-(64,65), $2.976\mu s$					
							MATTC : $(x_6x_0 = 0111111)$ Stores the accumulator into the					
1	1	1	1			1	the timer's 12 bit comparator register for the internal timer of the					
				1	0		PEC. A counter is counting upwards until it reaches the value					
				1	0		specified in the comparator register. Still unclear how interrupts					
							work.					
							0xfbf, 7677, Function 15-1-63, $3.824 \mu s$					
			1	-			WDPL5H, WDPL5L: Write the accumulator the the DPL05's					
						0	transmitter registers. High $(x_6x_0 = 000001)$ and low					
							$(x_6x_0 = 000000)$ word have to be written separately and the					
				1	1		MSB of MSW is automatically set to 1 during write. Unclear how					
				1	1		transmission is started (needs more than one write) and the LSB					
							of LSW is sent first. This bit is present during the clock pause					
					İ		before each transmission.					
							$0xfc(0,1), 770(0,1),$ Function 15-1-(64,65), $4.456 \mu s$					


x_{11}	x_{10}	x_9	x_8				x_7x_0 and Description
							Description Data is sent to the outputs (IOW). x_4x_0 is some kind of address
							plied to the bus in an intermediate state (DPL-number in x_5 and x_6 is
				the ti			too). Some combinations are prohibited since they code for DPL05 and
				me u	mer	•	
							Applying word zx_3x_0 as parameter launches an IOW instruction to
							address $xyzx_3x_0$ and writes accu out to a Panavia-Link DPL01 to
							DPL04. x_3x_0 are inserted as destination into the datagram, where x ,
							y and z determine the link used for output and the identifier used. The following scheme applies:
							Plug x y z Identifier Command
							DPL02 0 1 1 00 WDPL2.Id0 $x_3x_0 \ (\neq 1111)$
							DPL03 1 1 1 00 WDPL3.Id0 $x_3x_0 \ (\neq 1111)$
							DPL02 0 0 1 01 WDPL2.Id1 x_3x_0
							DPL03 1 0 1 01 WDPL3.Id1 x_3x_0
							$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
							$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
							$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
							Monitoring the DPL01-DPL04 outputs in an negative regime, i.e. use
							CLK- on Pin7 for clock and DATA- on Pin10 for signal one gets the
							following diagrams:
							fip stopped
							pos: -10.00 V 10.00:1 1M2 dc
							2 5.00 V/div
1	1	1	1				c1 10.00+1 IMΩ dc
				1	X	у	Proprosed Propro
					71	J	Francisco proportion of the contraction of the cont
							7.1000 us 9,6000 us 12.1000 us 500 ns/div realtime Trigger Mode: Edge
							1 5.00 V/ 2 5.00 V/ -10.0000 V 10.0000 V 2 F 2.500 V
							/p stopped
							1 5.00 Y/div
							10.00-1 Ins de
							2 5.00 V/div pos: 10.00 V 10.0011 IMM dc
							Managaritan
							harmony - Ima latar h. In any man
							-4.0000 us 16.0000 us
							2.00 us/div realtime Trigger Hode: 1 5.00 V/ 2 5.00 V/ Edge
							-10.0000 V 10.0000 V 2 _f 2.500 V
							Output upon sending: 1 0 0 0 Accu 1 SB USB USB MSB 0 1 0 0 0 3
							Issuing a second transmission while another transmission is running
							causes the program execution to be delayed until transmission has com-
							pleted. The same applies if the second transmission is issued to a diffe-
							rent DPL01-DPL04 output or a read operation is initiated.
							$0xf80, 4095, Function 15-1, 4.866 \mu s - 13.000 \mu s$


x_{11}	x_{10}	x_9	x_8	x_7x_0 and Description
1	1	1	1	RETFI: Return from Interrupt if $x_7 = = x_0 = 1$.
1	1	1	1	$0xfff, 4095,$ Function 15-1-127, $7.120\mu s$






from SK7

